0=k^2+9k-135

Simple and best practice solution for 0=k^2+9k-135 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=k^2+9k-135 equation:



0=k^2+9k-135
We move all terms to the left:
0-(k^2+9k-135)=0
We add all the numbers together, and all the variables
-(k^2+9k-135)=0
We get rid of parentheses
-k^2-9k+135=0
We add all the numbers together, and all the variables
-1k^2-9k+135=0
a = -1; b = -9; c = +135;
Δ = b2-4ac
Δ = -92-4·(-1)·135
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{69}}{2*-1}=\frac{9-3\sqrt{69}}{-2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{69}}{2*-1}=\frac{9+3\sqrt{69}}{-2} $

See similar equations:

| 8d-25=3d+2 | | 5(x+5)+3=-10(x-5)-2 | | 1/6-4/3x=x-1+3/4 | | 2x=75x+26x^2 | | 2x+18=138 | | 7x+17=-2 | | 4n^2-25n=0 | | -9x+15=-3x+45 | | -161=-9-8n | | (x+5)+x=35 | | 6s−-8s−13s=-12 | | 6(x+5)+2=-5(x-1)-8 | | 2(z-3)=4(z+5)-14 | | 16=9x+7 | | 14-6s-15=8s+19-4s | | 4x+6=1/2x-1 | | (5x^2-4)^1/4=x | | 0.009(6-k)+0.08(k-5)=1 | | 10x+4=4x-38 | | 3y−2y=9 | | 10x+4=4x-3£ | | 7=8x5+5 | | 3x/2-5=x-2 | | 5x-2(4x-2)=22 | | 10x-63=6x-7 | | 3(x+4)=x-23.5 | | -8+x/5=2 | | 9m+14=2m+10 | | 80/x=16 | | 6x-18=14x38 | | x^2-4x-12=-7 | | 16v=254 |

Equations solver categories